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Summary

� Many trees exhibit masting –where reproduction is temporally variable and synchronous

over large areas. Several dominant masting species occur in tropical cyclone (TC)-prone

regions, but it is unknown whether TCs correlate with mast seeding.
� We analyzed long-term data (1958–2022) to test the hypothesis that TCs influence cone

production in longleaf pine (Pinus palustris). We integrate field observations, weather data,

satellite imagery, and hurricane models to test whether TCs influence cone production via:

increased precipitation; canopy density reduction; and/or mechanical stress from wind.
� Cone production was 31% higher 1 yr after hurricanes and 71% higher after 2 yr, before

returning to baseline levels. Cyclone-associated precipitation was correlated with increased

cone production in wet years and cone production increased after low-intensity winds

(≤ 25m s�1) but not with high-intensity winds (> 25m s�1).
� Tropical cyclones may stimulate cone production via precipitation addition, but high-

intensity winds may offset any gains. Our study is the first to support the direct influence of

TCs on reproduction, suggesting a previously unknown environmental correlate of masting,

which may occur in hurricane-prone forests world-wide.

Introduction

Many plants exhibit a reproductive phenomenon known as mast
seeding where seed production is highly variable in time and syn-
chronous over large geographic areas (Janzen, 1971; Kelly, 1994;
Koenig & Knops, 2005; Pesendorfer et al., 2021). Several mechan-
isms have been proposed to explain the adaptive significance of
masting, and the pattern has been linked to satiation of seed preda-
tors, increased wind pollination efficiency, and timing reproduc-
tion for favorable establishment conditions (Kelly, 1994; Pearse
et al., 2016). Weather variability including temperature cues and
water relations are frequently associated with seed production
(Kelly et al., 2013; Wion et al., 2020; LaMontagne et al., 2021).
Reproduction in several masting species is temporally linked to cli-
mate oscillations, such as El Niño–Southern Oscillation (ENSO)
which influences the variability and synchrony of masting cues
(Schauber et al., 2002; Fletcher, 2015; Ascoli et al., 2020; Mundo
et al., 2021; Wion et al., 2021). Studies on drivers of masting often
examine correlations between reproduction and weather patterns,
but far less is known about how tropical cyclones (TCs) may also
contribute to observed variability in seed production.

Among environmental cues, forest disturbances such as
drought and fire have been found to stimulate masting, but a
recent review of global studies identified a paucity of research on
whether intense winds may stimulate masting events (Vacchiano
et al., 2021). While fire and smoke can directly trigger hormonal

signals that shift resource allocation to reproduction (Vacchiano
et al., 2021), few studies examine how severe wind influences seed
production. Walker & Neris (1993) noted increased fruit pro-
duction among shrubs following TC damage in a Puerto Rican
forest and speculated that increased light enhanced fruit produc-
tion. Read et al. (2008) examined the population structure of a
monocarpic tree species Cerberiopsis candelabra Vieill. ex Pancher
& Sébert (Apocynaceae) and suggested that cyclone damage cues
mass flowering. Each of these studies suggests that canopy mor-
tality can increase resource availability among surviving trees, but
none examined additional mechanisms by which storm-
stimulated seed production may occur.

Tropical cyclones (TCs) are common in the Atlantic and Paci-
fic Oceans (Patricola et al., 2022), and masting is common
among several tree species that occur in forests prone to TCs,
including ecologically dominant genera such as Quercus, Pinus,
Picea, and Nothofagus (Table 1). Mortality from TCs affects
forest dynamics in a broad range of forests across the globe
(Boose et al., 2001; Van Bloem et al., 2006; Lee et al., 2008;
Altman et al., 2013; Chen et al., 2014; Dahal et al., 2014;
Zampieri et al., 2020; Rutledge et al., 2021; Zhang et al., 2021).
Because of the high global incidence of TC activity and masting,
it is important to understand whether, and how, cyclones may
relate to reproductive behavior in masting species.

Longleaf pine (Pinus palustris Mill ) is a masting species well-
suited to testing hypotheses of TC-stimulated seed production.
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Ecosystems dominated by the species once spanned 370 million
km2 of the southeastern United States (Jose et al., 2006) – an area
that experiences hurricanes every c. 13 yr (Keim et al., 2007).
Due to land use changes and fire suppression, longleaf pine has
been reduced to 5% of its historic range and is considered an
endangered ecosystem (Noss et al., 1995). Because of widespread
interest in restoring the species, long-term records of seed pro-
duction are available across its range that can reveal insights into
reproduction dynamics (Brockway, 2018).

Weather variation is thought to drive mast seeding events and
has been shown to impact longleaf pine cone production
(Boyer, 1990; Kelly & Sork, 2002; Pearse et al., 2014). Several
weather factors are associated with longleaf pine cone production
(Chen et al., 2022). Abundant precipitation in the spring and
early summer followed by a period of dryness has been linked
with increased abundance of longleaf pine female strobili
(Shoulders, 1967). Moderate levels of precipitation and tempera-
ture generally favor higher cone production, but the relationship
between weather and cone production is generally modest and
inconsistent across stands (Guo et al., 2016; Chen et al., 2018,
2022). Estimates of periodicity in longleaf pine cone production
have ranged from 3 to 4 yr (Guo et al., 2016), 5 to 7 yr (Wahlen-
berg, 1946), and 8 to 10 yr (Maki, 1952). Results differ some-
what depending on sites and time periods analyzed. The high
variability in cone production combined with weak linkages with
temperature and precipitation suggest that yet unexplored factors,
such as TC occurrence, may influence cone production.

Objectives and hypotheses

We tested the primary hypothesis that TCs influence cone pro-
duction in longleaf pine, contributing to high reproductive varia-
bility. Some forest managers hold this belief anecdotally, but we

know of no documentation of its occurrence, nor empirical evi-
dence supporting any specific causal mechanism. Thus, we also
tested hypotheses related to specific mechanisms by which TCs
influence cone production through: (1) increased precipitation;
(2) canopy density reduction; and (3) mechanical damage or
stress. Several of these mechanisms may concurrently alter cone
production leading to a net increase, or decrease, in cones.

First, precipitation associated with TCs may increase cone pro-
duction. Tropical cyclones (TCs) bring rainfall events that with
record high intensity during autumn months in the Northern
Hemisphere (Schwarz, 1970). Because aspects of reproduction in
longleaf pine are primarily driven by weather factors (Shoulders,
1967; Boyer, 1973; Chen et al., 2022), TC-associated precipitation
may influence cone production depending on the amount, timing,
or drought conditions that precede the storm. For example, the
effect that TC-associated precipitation has on cone production
may depend on soil moisture conditions or the physiological state
of trees before the storm. Second, tree mortality from TCs
increases resource availability (Cooper-Ellis et al., 1999; McNab
et al., 2004) and may increase cone production among survivors.
Reductions in stand density from silvicultural thinning often result
in increased growth and cone production in many pine species
(Krannitz & Duralia, 2004; Moreno-Fernández et al., 2013; Ayari
& Khouja, 2014). Additionally, thinning to a basal area of
8 m2 ha�1 can increase cone production (Croker & Boyer, 1975;
Brockway et al., 2006). If TCs reduce competition, then cone pro-
duction could increase 3 yr after overstory reduction as observed
after silvicultural thinning (Croker & Boyer, 1975). Third,
mechanical damage or stress from intense winds may either
increase or decrease cone production. Severe winds may physically
damage reproductive structures as seen following freeze events
(Shoulders, 1967; Croker & Boyer, 1975; Du et al., 2012). How-
ever, wind damage can also lead to minor mechanical breakage

Table 1 Selected tree species associated with hurricane-prone regions and exhibiting a masting habit of seed production.

Cyclone basin Family Species Native range Masting studies

North Atlantic Betulaceae Betula alleghaniensis

Britton
Eastern N. America, incl N. Atlantic coast Houle (1999)

Fagaceae Quercus alba L. Eastern N. America, incl Atlantic coast Sork et al. (1993), Lichti et al. (2014),
Bogdziewicz et al. (2018)

Fagaceae Q. montanaWilld. Eastern N. America, Appalachia Bogdziewicz et al. (2018)
Fagaceae Q. rubra L. Eastern N. America, incl. N. Atlantic

coast
Sork et al. (1993), Liebhold et al. (2004),
Lichti et al. (2014), Bogdziewicz
et al. (2018)

Fagaceae Q. velutina Lam. Eastern N. America, incl. mid-Atlantic
coast

Sork et al. (1993)

Pinaceae Abies balsamea (L.) Mill. Eastern N. America, North Atlantic coast Houle (1999)
Pinaceae Picea glauca (Moench) Voss N. American taiga, incl. N. Atlantic coast Ascoli et al. (2020)
Pinaceae Pinus palustris Southeastern N. America, South Atlantic

and Gulf coasts
Chen et al. (2018), LaMontagne
et al. (2021)

Sapindaceae Acer saccharumMarshall Eastern N. America, N. Atlantic coast Houle (1999)
NW Pacific Dipterocarpaceae Shorea siamensisMiq. Southeast Asia Marod et al. (2002)

Dipterocarpaceae Various Various Yasuda et al. (1999)
Fagaceae Fagus crenata Blume Japan Kon et al. (2005)
Fagaceae Q. crispula Blume East Asia Shibata et al. (2020)

SW Pacific Apocynaceae Cerberiopsis candelabra New Caledonia Read et al. (2008)
Nothofagaceae Nothofagus spp. Temperate southern hemisphere Ogden (1988), Kelly et al. (2008)
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and leaf stripping or sublethal damage to the trunk (Doyle et al.,
1995; Rutledge et al., 2021), which may trigger a stress response
that induces cone production. A pattern of enhanced reproduction
is often seen after drought stress (Lauder et al., 2019). Removal of
live leaf area induces physiological changes in transpiration and
respiration (Clinton et al., 2011), which has been suggested to sti-
mulate a range of responses including increased reproduction (Lau-
der et al., 2019).

Materials and Methods

Effects of tropical cyclone occurrence on cone production

The overall approach of our study was to evaluate changes in
longleaf pine (Pinus palustris) cone production following TCs.
Long-term data on longleaf pine cone production is available at 12
longleaf pine sites distributed across the southeastern United States,
including many years where sites were impacted by TCs (Fig. 1).
The length of records at each site ranges from 8 to 67 yr and
averages 39 yr (Supporting Information Fig. S1). At each site,
annual counts of green cones were measured each spring (April and
May) by USDA Forest Service scientists using ×8–10 binoculars
(Fig. 1c). During spring and summer, cones have a distinctive
green color, which changes to a dull brown when they reach matur-
ity between mid-September and mid-October (Chen et al., 2018).
We used publicly available data on cone counts as site-level averages
which represented the mean number of cones per tree averaged
from ≥ 10 trees at each site. Complete details on cone count meth-
odology can be found in previous reports (Chen et al., 2016).

To identify years when each study site was impacted by TCs, we
identified instances where a storm reached hurricane-strength
winds (sustained winds ≥ 33m s�1) within 50 nautical miles
(92.6 km) of each site, using wind speed and location data from
the National Hurricane Center best track data during the years
when cone counts were collected (Fig. 1a; HURDAT2; Landsea &
Franklin, 2013). Among the 56 tracks identified, we used a hurri-
cane model to estimate wind speeds experienced from each
hurricane. To estimate maximum sustained wind speeds experi-
enced at each site, we used the HURRECON model implemented
in R (Boose et al., 2001; Cannon, 2022). Briefly, the HURRE-
CON model combines information on the location and wind
speed of TC observations from HURDAT2 (Landsea & Frank-
lin, 2013) and uses a lognormal function to estimate sustained
wind speeds as a function of distance from the hurricane center
(Boose et al., 2001; Cannon, 2022). The HURRECON model
requires multiple wind speed measurements to estimate hurricane
wind fields. These measurements are only available for TCs that
reach hurricane-level winds (sustained winds ≥ 33m s�1). Thus,
we limited our analysis to hurricanes only. We use the term TC
when discussing storms broadly and the more specific term hurri-
cane when necessary to restrict the term to storms in our analysis.
Further details of the model can be found in Boose et al. (2001)
and Cannon et al. (2023). Though relatively simple, this meteoro-
logical model predicts sustained wind speeds comparable to those
predicted from more complex numerical weather simulations and
has been used to predict hurricane damage to forests and to

characterize forest hurricane disturbance regimes in the eastern
United States (Boose et al., 2001; Gannon & Martin, 2014; Bige-
low et al., 2020; Cannon et al., 2023). Lastly, we included only
events where maximum sustained winds from the cyclone were
> 10m s�1 – the lowest nonzero wind speeds predicted by the
model, resulting in a total of 52 unique tracks. These tracks repre-
sent 96 instances where cyclones impacted study sites (hereafter,
‘events’), as some hurricane tracks affected multiple sites.

To test the hypothesis that TCs influence cone production, we
assessed changes in cone production by site 1 yr before, and in the
3 yr after a hurricane event. We classified the cone record using a
lag function ranging from Year 0 (before the event) to Year 3 after
an event. Because cone records were consistently recorded in early
spring (April and May), and no hurricanes approached a site before
31 May of any year, cone records occurring in the same year as a
hurricane were classified as prestorm measurements (Year 0, base-
line), and subsequent years were classified as 1- to 3-yr poststorm,
correspondingly. If another hurricane reached the site during the
interval, the lag function restarted at zero. In 34 of the 96 events
identified, cone count data were available for both 1 yr prior and all
3 yr following a cyclone. To test the hypothesis that TCs influence
cone production, we used a repeated measures ANOVA to deter-
mine whether mean cone count significantly differed in Years 0–3
following a hurricane (n= 34). After applying a log transformation
to cone counts, we inspected for outliers using the boxplot method,
checked for normality, and tested for sphericity using Mauchly’s
test (Mauchly, 1940), to ensure data met assumptions for using
repeated measures ANOVA. We used the repeated measures
ANOVA to assess for differences among lag years (0–3; within-
subject effects) while accounting for differences in site-level cone
production. Because of the occurrence of periodic masting events, it
is possible that cone counts could, by chance, significantly differ
over any arbitrarily chosen four-year period irrespective of TC
occurrence. Thus, we used a repeated measures ANOVA on cone
counts over 34 arbitrarily chosen periods naı̈ve of TC occurrence as
a null model for comparison with the above hurricane lag model.

Effects of precipitation supplementation on cone
production

Once we established that hurricanes increase cone production,
particularly in Year 2 after a hurricane, we explored three
hypothetical mechanisms by which TCs might influence cone
production. To test the hypothesis that precipitation associated
with TCs increases cone production, we compared changes in
cone counts in Year 2 following each hurricane to the associated
precipitation anomaly. We also tested whether timing, or preced-
ing drought conditions, influenced the effect that anomalous pre-
cipitation had on cone production. To estimate the amount of
additional precipitation associated with each event, we calculated
the precipitation anomaly (PPTA) as

PPTA ¼ PPTC–PPTT Eqn 1

where PPTA is anomalous precipitation (mm), PPTC is 15-d pre-
cipitation in the period flanking the TC, and PPTT is the typical
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15-d precipitation in the same period based on the mean value
for years between 1981 and 2022. To calculate precipitation
values, we used the PRISM daily spatial climate dataset AN81d

(Daly et al., 2008, 2015). This dataset provides spatially continu-
ous estimates of daily precipitation from 1981 to present across
the coterminous United States at a spatial resolution of 1 km as

Fig. 1 Longleaf pine cone counts at 12 tropical cyclone (TC)-prone sites in the southeastern United States. (a) Tropical cyclone (TC) tracks that approached
within 100 NM (92.6 km) of 12 longleaf pine study sites (triangles) between 1958 and 2020 from HURDAT2 database (Landsea & Franklin, 2013). Site
abbreviations as in Table 2. (b) Portion of moderately damaged longleaf pine stand impacted by Hurricane Michael (2018) in Baker County, GA, USA.
(Photo credit: The Jones Center at Ichauway, used with permission). (c) Counting longleaf pine cones on tree crowns using ×8–10 binoculars at Bladen
Lakes State Forest (2015) in Bladen County, NC, USA. (Photo credit: Yoko Brockway, USDA Forest Service, used with permission).
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interpolated from surface stations. We extracted daily precipita-
tion at each site from 1981 to 2022 using Google Earth
Engine (Cannon, 2023). We calculated the mean daily
precipitation (Fig. S2) and averaged cumulative precipitation
across a 15-d window to obtain PPTT. To obtain PPTC, we cal-
culated the cumulative precipitation in the 15-d window flanking
each event.

To test the hypothesis that the amount, timing, or conditions
preceding TC-associated precipitation increase cone production,
we modeled the change in cone production after hurricanes as a
function of PPTA and hurricane timing. We reasoned that the
relationship between increased cone production and PPTA

could take one of three forms. Cone production may increase
linearly with additional precipitation; cone production may
increase with precipitation up to a threshold and then have no
additional effect; or cone production may initially increase with
precipitation and then decrease with high precipitation. Thus,
we modeled cone production as: (1) a linear function; (2) a
saturating function; and (3) a quadratic function of PPTA to
represent each of these possibilities. The linear model took the
following form:

Δcones ¼ β0 þ β1PPTA Eqn 2

where Δcones is conesyear 2 – conesyear 0 and β0 and β1 are fit
using linear regression. The saturating model took the following
form:

Δcones ¼ a PPTAð Þ= a s�1 þ PPTA

� �
Eqn 3

where a is a parameter representing asymptotic cone production
and s corresponds to the increase in cones (i.e. slope) when
PPTA= 0 (Michaelis & Menten, 1913; Bolker, 2008). The
quadratic function allows an increase in cone production to a
maximum before declining with excess precipitation and took the
following form:

Δcones ¼ β0 þ β1 PPTA þ β2 PPTA
2 Eqn 4

where β0, β1, and β2 are parameters fit using nonlinear least
squares regression.

To test the hypothesis that timing of precipitation can influ-
ence cone production, we modeled cone production as a linear
function of hurricane timing expressed as Julian date (timing-
only model). We also modeled cone production as a linear func-
tion of precipitation timing, amount, and their interaction
(Precipitation × Timing model).

To test the hypothesis that TC-associated precipitation and
drought interactively influence cone production, we modeled cone
production as linear function of PPTA, Palmer Drought Severity
Index (PDSI), and their interaction (Precipitation×Drought
model). We obtained PDSI values 1 wk before each event using
the GRIDMET drought indices dataset, which provides 5-d esti-
mates of PDSI since 1980 (Abatzoglou, 2013) using Google Earth
Engine (Cannon, 2023). Lastly, to compare models, we included
an intercept-only null model and ranked all models using Akaike

information criterion (AIC; Anderson & Burnham, 2002). We
included only those events where data were available to calculate
PPTA (i.e. after 1981) and where cone count data were available
in Years 0 and 2 for calculating Δcones (n= 38).

Effects of canopy density reduction on cone production

To test the hypothesis that TCs increase cone
production through canopy density reduction, we examined
whether changes in cone production were associated with
declines in vegetation density in the area surrounding focal trees
at each site. Because detailed stand information was not available
over the long temporal and spatial extent of the study, we used
remotely sensed vegetation indexes to capture major changes in
vegetation structure. We compiled available satellite imagery
between 2000 and 2013 from Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) and from 2014 to 2021 using Landsat 8
Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS;
Fig. S3). Both imagery datasets consist of multispectral atmo-
spherically corrected surface reflectance bands at a resolution of
30 m. We generated composite imagery for each site and year by
compiling multiple scenes from each year using Google Earth
Engine (Cannon, 2023). We masked pixels classified as clouds
and composited imagery by selecting the median value among
available imagery for each spectral band (Fig. S3). Using the
composite imagery, we calculated the Normalized Difference
Vegetation Index (NDVI; Soudani et al., 2006).

NDVI ¼ NIR�Red

NIR þ Red
Eqn 5

We composited imagery for the winter months of each year
(November–February) for all available years and sites within
50 ha (0.4 km radius). We used winter NDVI to avoid the influ-
ence of growing season growth of understory vegetation and to
avoid compositing pre- and postdisturbance imagery in the same
image. For each site and TC event, we calculated ΔNDVI as the
NDVIyear 2 –NDVIyear 0, and we calculated Δcones as conesyear 2 –
conesyear 0. We tested whether ΔNDVI was a significant predictor
of Δcones using linear regression. We included in the analysis only
those events where data were available to calculate ΔNDVI (after
2000) and where cone count data were available in Years 0 and 2
for calculating Δcones (n= 24).

Effects of mechanical stress or damage on cone production

To test the hypothesis that TCs may alter cone
production through mechanical stress, we evaluated whether
changes in cone production were related to maximum sustained
wind speed experienced at each site. For each site and cyclone
event, we estimated maximum sustained wind speed experienced
each year using the HURRECON model. We tested whether
maximum sustained wind speed was a significant predictor of
Δcones using linear regression. We included in the analysis only
those events where cone count data were available in Years 0 and
2 for calculating Δcones (n= 46).
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Comparison among hypotheses

After finding that the maximum sustained wind speed model and
Precipitation × Drought model were both good predictors of
change in cone production after hurricanes, we further sought to
compare these two models. Comparison of AIC values requires
identical datasets, and the observations included in initial tests
varied slightly depending on the availability of weather data for
calculating PPTA and satellite imagery for calculating NDVI.
Thus, to compare among competing hypotheses, we reduced the
dataset to instances where all relevant values were available and
used AIC to compare among the two models (n= 18).

Results

Mean cone counts varied widely among sites and years (Table 2;
Figs S4, S5). Study-wide mean cone counts across sites were
25� 32 cones per tree and ranged from 7� 10 to 49� 51 cones
per tree at the Ordway–Swisher and Ichauway sites, respectively.
The coefficient of variation in cone count, often used as an indi-
cator of masting behavior, averaged 1.33 across sites and ranged
from 0.81 to 2.01 (Table 2). Cone counts during mast years,
defined as the site-specific 90th percentile cone count, averaged
63 cones per tree and ranged from 18 to 123 cones per tree at the
Ordway–Swisher and Ichauway sites, respectively (Table 2).

Cone production increased following hurricane events. After a
log transformation, cone count data met assumptions of repeated
measures ANOVA with no influential outliers (Fig. S6A), were
normally distributed (Fig. S6B), and met the sphericity assump-
tion with equal variance among combinations of lag years
(Mauchly’s W= 0.790, P = 0.187; Fig. S6C,D). We found that
cyclone activity significantly increased cone production in the
years following a hurricane event (P= 0.028). Relative to precy-
clone years (Year 0), we found that cone production was c. 31%
higher one year after cyclones, 71% higher in Year 2, and
returned to precyclone measurements by Year 3 (Figs 2, S7). By

comparison, the repeated measures ANOVA for arbitrary (null)
4-yr periods showed no difference in cone counts among arbi-
trary lag years (P= 0.417; Fig. S8).

TCs significantly increased precipitation at affected sites and
PPTA averaged 107 mm in the 15-day flanking cyclone approach
(Fig. 3a, P< 0.001). Supplemental precipitation was concen-
trated in days preceding storm approach and daily precipitation
peaked 3–4 d before a cyclone’s closest approach to a study
site (Fig. 3b). PPTA was highest in late September (averaging
c. 150 mm) and was lower in summer and winter months
(Fig. 3c).

Anomalous storm-associated precipitation was a good predic-
tor of change in cone production, when considering antecedent
drought conditions. Simple models of anomalous storm-
associated precipitation did not improve upon the null model
(Table 3). Neither the linear, quadratic, or asymptotic relation-
ships with precipitation were good predictors of change in
cone production (Fig. 4a). Similarly, neither the precipitation
timing only nor precipitation and timing interactions models
improved upon the null model (Table 3). We found that the
precipitation × drought model was the best model of cone pro-
duction (R2= 0.2277; Fig. 4b) and was significantly better than
the null model according to AIC (Table 3). In this model, the
effect that PPTA had on cone production depended on antece-
dent drought conditions as measured by PDSI (PPTA × PDSI
interaction effect, P= 0.006). Hurricane-associated precipitation
increased cone production during wet conditions (e.g.
PDSI> 2), but the opposite was true during dry conditions
(e.g. PDSI< 0; Fig. 4c).

TC-induced changes in NDVI were modest, with no discern-
able impact on cone production. Winter NDVI generally
increased at all sites over the period where data were available
(Fig. S9). Mean ΔNDVI following cyclone events was not signif-
icantly different from zero (P = 0.887; Fig. 5a), and Δcones was
not significantly correlated with ΔNDVI (R2= 0.014, P= 0.637;
Fig. 5b).

Table 2 Mean annual cone count summary data from 12 longleaf pine (Pinus palustris) sites distributed across the southeastern United States.

Site Symbol
Record
length (yr)

Cone counts (per tree yr�1) Cyclones

Mean SD Median 90th% Count Frequency (yr�1)
Return
interval (yr)

Apalachicola AP 43 20.6 33.0 9.9 38.3 8 0.1860 5.38
Blackwater BW 58 27.9 43.4 11.1 75.5 10 0.1724 5.80
Bladen Lakes BL 43 24.8 36.8 9.7 91.0 11 0.2558 3.91
Eglin EG 50 16.6 22.2 8.3 45.0 10 0.2000 5.00
Escambia ES 67 29.0 36.1 14.8 67.1 10 0.1493 6.70
Ft Moore FM 28 27.9 32.6 16.2 61.3 1 0.0357 28.00
Ichauway IC 26 49.4 50.8 24.9 123.1 4 0.1538 6.50
Kisatchie KS 55 35.0 39.6 24.3 72.7 9 0.1636 6.11
Ordway–Swisher OS 8 6.7 10.0 1.8 17.8 2 0.2500 4.00
Sandhills SH 54 29.1 32.5 16.8 63.7 3 0.0556 18.00
Southlands SL 30 14.7 29.6 1.7 51.9 3 0.1000 10.00
Tall Timbers TT 24 23.4 19.0 14.5 52.9 4 0.1667 6.00
Average 25.4 32.1 12.8 63.3 6.25 0.16 6.35

SD, standard deviation of cone counts.
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Maximum sustained wind speed significantly influenced cone
production (Fig. 6). We found that Δcones significantly
decreased with increasing wind speed, as predicted by the HUR-
RECON model (R2= 0.142, P = 0.010).

In the reduced dataset with common observations of PPTA,
PDSI, and maximum sustained wind speeds, we found greater
support for the PPTA × drought model (AICC= 196.966), com-
pared with the wind model (AICC= 203.069), representing a
ΔAIC of 6.103.

Discussion

Our study is the first to reveal that TCs may increase reproduc-
tive output for at least 2 yr, supporting the hypothesis that TCs
may simulate cone production. We found that average cone pro-
duction increased 31% in the first year after a hurricane and 71%
in the second year, before returning to baseline levels (Fig. 2).
This consistent pattern of increased cone production is striking,
in light of the high annual variability typically observed in

Fig. 2 Changes in longleaf pine cone count
following tropical cyclones (TCs). Changes
shown as count factor (cone count in a given
year divided by mean over the 4-yr period)
before (Year 0), and 3 yr following (Years 1–
3) cyclone events at 12 longleaf pine sites in
the southeastern United States. Thick
horizontal line represents median, hinges
represent 25th and 75th percentile, and
whiskers represent 1.5× interquartile range.
P-value represents lag effect using repeated
measures ANOVA on log transformed cone
counts.

Fig. 3 Tropical cyclone (TC)-associated precipitation at study sites (a) 15-d precipitation anomaly associated with 38 cyclones occurring at 12 study sites.
Blue line represents mean hurricane-associated precipitation anomaly of c. 107mm and dashed line represents x= 0. (b) Timing of individual precipitation
anomalies, indicating peak hurricane-associated precipitation occurring 3–4 d before approaching a site. Thick horizontal line represents median, hinges
represent 25th and 75th percentile, and whiskers represent 1.5× interquartile range. P-value represents lag effect using repeated measures ANOVA. (c) Sea-
sonal variation in 15-d precipitation anomaly illustrating higher cyclone-associated precipitation in the fall season (�October). Blues lines in (b, c) represent
a loess smoothing function.
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longleaf pine cone production (Figs S4, S5), and the fact that
other authors have found that weather patterns are not consis-
tently good predictors of cone production in the species (Chen
et al., 2022). Long-term climate patterns such as ENSO have
been linked to increased cone production in some pine species
(Wion et al., 2021) as have discrete disturbances such as drought,
fire, and frost (Ascoli et al., 2021). To our knowledge, this is the
first demonstration that TCs may also relate to seed masting in
longleaf pine.

Although we examined a single tree species with a distribution
that highly overlaps TC-prone regions (Cannon et al., 2023),
cyclone-induced masting may occur in other species. Several eco-
logically dominant masting tree species have native ranges that
coincide with high TC activity (Table 1). Long-term seed pro-
duction records (e.g. Pearse et al., 2017; Hacket-Pain et al.,
2022) could be used to determine whether TC-associated mast-
ing is a widespread phenomenon. Although we found strong lin-
kages between hurricanes and increased cone production (Fig. 2),
the effect was not universal (Fig. S1). Some masting events
occurred without a preceding hurricane, and not all hurricanes
led to a masting event (Fig. S1). Winds from TCs add complexity
to understanding patterns of seed production in masting species.
Previous studies underscore that weather patterns, both long- and
short-term, can be proximate drivers of seed production and pro-
vide environmental cues that stimulate masting (Pearse et al.,
2014; Guo et al., 2016; Vacchiano et al., 2021; Wion et al.,
2021).

We identified two potential mechanisms by which TCs may
lead to increased cone production. Both TC-associated precipita-
tion and mechanical stress from intense winds were correlated
with changes in cone production. Tropical cyclone (TCs) were
associated with an average of 107 mm of additional precipitation
(Fig. 3a). Precipitation and its timing can play a role in longleaf
pine cone production. Chen et al. (2018) found that cone pro-
duction increased with decadal variability in precipitation and
temperature. We found that cone production increased with TC-
associated precipitation, but only when preceded by a wet period

(Fig. 4c). Additional precipitation following drought conditions
did not lead to increased cone production. This pattern may be
explained if drought conditions alter the physiological state of
trees or edaphic conditions. For example, prolonged drought
may cause trees to allocate resources to growth or defense rather
than reproduction (Trowbridge et al., 2021). Alternatively, the
soils found in these study sites are coarsely textured and typically
have high infiltration rates to deep soil layers, especially in dry
conditions. Thus, drought conditions may cause TC-associated
precipitation to lead to little change in soil moisture (Brady &
Weil, 2014). In a study of masting in Pinus edulis Engelm., Wion
et al. (2020) explored similar interactions, finding that late sum-
mer monsoonal provide precipitation during key periods of cone
development and were especially influential on masting in arid
regions. Conversely, our findings suggest that TC rains are asso-
ciated with increased cone development only when preceded by
wet conditions.

Higher cone production in Years 1 and 2 after a hurricane sug-
gests that TC-associated precipitation may increase survival of
existing conelets. The male catkins and female conelets of long-
leaf pine initiate in July and August and develop during subse-
quent months (Guo et al., 2016). Pollen shedding occurs around
March (Boyer, 1973; Chen et al., 2020), but fertilization does
not occur until the following spring, and maturation and disper-
sal occur c. 2.5 yr after initiation in October (Chen et al., 2018).
Because of the prolonged development time, newly initiated cat-
kins and conelets (c. 2 months old) and recently pollinated cone-
lets (c. 14 months old) are both present during the period of peak
TC activity (August–September). Thus, TC-associated precipita-
tion could increase reproductive output in Year 1 by enhancing
the survival of pollinated conelets and increase reproductive out-
put in Year 2 by increasing output or persistence of new catkins
and conelets.

Although it had less support than the precipitation-based
model, we found cone production decreased with TC wind
intensity (Fig. 6). This pattern could suggest that TC winds sti-
mulate cone production through some mechanism (e.g. precipi-
tation as discussed earlier) but that higher intensity wind may
offset gains causing mechanical damage to developing reproduc-
tive structures. Severe freezing events can damage reproductive
structures in longleaf pine and limit cone or seed production
(Shoulders, 1967; Croker & Boyer, 1975; Du et al., 2012). Simi-
larly, high wind intensity may damage, or remove, reproductive
structures offsetting potential gains. Although less plausible, low-
intensity wind itself could stimulate reproduction. Many vascular
plants are known to exhibit resource allocation toward reproduc-
tion in response to stress (Takeno, 2016; Lauder et al., 2019).
Severe wind damage can result in lethal stem breakage or uproot-
ing of trees. However, in many instances, damage may be sub-
lethal, resulting in broken crowns, broken branches or stripped
leaves (Doyle et al., 1995; Rutledge et al., 2021). Sublethal
mechanical damage from TCs may cue hormonal pathways
responsible for increased reproduction. Branch girdling, for
example, has long been used horticulturally to stimulate repro-
duction in Pinaceae seed orchards (Ebell, 1971; Bonnet-
Masimbert, 1987). Most research on the influence of stress on

Table 3 Akaike Information criteria for candidate models of Δcones as a
function of 15-d precipitation anomaly, precipitation timing, and/or Pal-
mer Drought Severity Index for longleaf pine (Pinus palustris).

Model Ka LLa AICc
a ΔAICca R2

Null 2 �207.039 418.420 5.500 0.000
Precipitation (linear) 3 �206.867 420.440 7.520 0.009
Precipitation (quadratic) 4 �205.396 420.005 7.085 0.008b

Precipitation
(asymptotic)

3 �207.219 421.144 8.224 �0.001b

Timing only 3 �206.882 420.470 7.550 0.008
Precipitation × Timing 5 �204.845 421.566 8.646 0.109
Precipitation × Drought 5 �200.522 412.920 0.000 0.290

aK is number of parameters estimated for model, LL is maximum log
likelihood, AICc is Akaike’s information criterion adjusted for small sample
size, and ΔAIC is the AIC differences of candidate model and minimum
AIC.
bWe report pseudo-R2 for the nonlinear model as variance explained by
the candidate model relative to the null model (McFadden’s pseudo-R2).
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conifer reproduction has focused on drought impacts (Thabeet
et al., 2009; Lauder et al., 2019). Additional research on the lin-
kages between severe wind events and tree stress response can
confirm the influence of sublethal damage from TCs on repro-
ductive output in longleaf pine and other species.

Our results also do not support the hypothesis that postcyclone
increases in cone production are related to increased resource
availability from tree mortality. We found no relationship
between changes in vegetation abundance (as measured by
NDVI) and cone production (Fig. 6). Increased reproduction

resulting from decreased density should increase cone production
in Year 3, but we found no such increase. This is surprising con-
sidering that other studies have found that silvicultural thinning
can increase cone production in longleaf pine (Brockway
et al., 2006) and many other pines (Krannitz & Duralia, 2004;
Moreno-Fernández et al., 2013; Ayari & Khouja, 2014). Compe-
tition among mature longleaf trees in open forests is relatively
small compared with earlier life stages (Rathbun & Cres-
sie, 1994); thus, removal of neighbors may have minimal impact
on resource availability and cone production in the low-density

Fig. 4 Models of change in longleaf pine cone counts based on tropical cyclone (TC)-associated precipitation. (a) Simple models of precipitation anomaly
(PPTA) were inadequate to predict change in longleaf pine cone production (Δcones). (b) A precipitation × drought model had the strongest relationship
with change in longleaf pine cone production (Δcones; R2 = 0.2277). Dashed line represents 1 : 1 line (c) Modeled changes in longleaf pine cone production
increased with precipitation anomaly (PPTA) for wet conditions (Palmer Drought Severity Index, PDSI= 2), moderate conditions (PDSI= 0), and drought
conditions (PDSI=�2).

Fig. 5 Changes in vegetation index at 12 longleaf pine sites. (a) Changes in Normalized Difference Vegetation Index (NDVI) immediately before (Year 0)
and after (Year 2) tropical cyclone (TC) events, indicating that ΔNDVI did not significantly differ from zero (P= 0.225) using a two-tailed t-test. (b) Rela-
tionship between ΔNDVI and Δcones for 24 cyclone events occurring 2001–2021 (R2= 0.041, P= 0.345).
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stands examined here. Competition reduction from TCs may
play a larger role in cone production when cyclone impacts occur
in younger, denser stands (Brockway et al., 2006; Patterson &
Knapp, 2016).

The hypothesized mechanisms explored in this study are well
suited for experimental manipulation to confirm causality of the
linkages found. For example, drought and rain conditions can be
manipulated via throughfall exclusion and irrigation systems (e.g.
Nepstad et al., 2002; Kirkman et al., 2016; Samuelson et al.,
2019). Mechanical stress from wind can be simulated by branch
girdling (e.g. Ebell, 1971), leaf stripping (e.g. Shiels & González,
2014), and tree shakers used for seed, nut, and fruit collection
(Alper et al., 1976).

Several hypotheses have been advanced to explain the adaptiv-
ity of masting in tree species. One hypothesized mechanism for
the evolution of masting is the environmental prediction hypoth-
esis where the same weather cues associated with favorable estab-
lishment conditions also trigger reproduction (Payton &
Brasch, 1978; Smith et al., 1990; Kelly, 1994; Ascoli et al., 2020;
Satake et al., 2021). Hurricanes may also represent a plausible
mechanism by which environmental prediction may occur.
While our study does not attempt to test whether TC-induced
seeding is adaptive, it is informative to consider how high seed
years soon after TCs may be advantageous to longleaf pine estab-
lishment. Longleaf pine seeds require bare mineral soil for germi-
nation, which is often exposed after surface fires (Brockway
et al., 2006). When mature trees are uprooted following wind
damage, large areas of soil are exposed (c. 2 m2; Sobhani et al.,
2014). Soil exposed from uprooted trees may provide germina-
tion sites for the increased cone and seed production following

TCs, as is the case with some herbaceous plants (Beatty, 1984;
Ulanova, 2000). Wind disturbance may also create barriers to fire
by disrupting fuel continuity (O’Brien et al., 2008; Cannon
et al., 2017) and providing short fire-free periods that can
enhance successful regeneration (Robertson et al., 2019). In addi-
tion, longleaf pine is more resistant to wind damage relative to
other pine species across many soil types (Johnsen et al., 2009;
Rutledge et al., 2021), and longleaf pine saplings respond more
positively to cyclone-created gaps compared with some associated
oak species (Pope et al., 2023; Arko et al., in press). Increased
reproduction may complement other longleaf pine traits that
promote resistance, resilience, and dominance of the species in
the TC-prone region.

These findings highlight the key role that winds from TCs
may play in shaping the ecology and evolution of species occur-
ring in areas where TCs are common. Anthropogenic influences
may warm sea surface temperatures (Elsner, 2006) and increase
the proportion of severe TCs (Holland & Bruyère, 2014); thus,
storm effects on reproductive behavior may become more impor-
tant in coming decades. Tropical cyclone (TCs) may also interact
with increases in temperature and extreme precipitation to induce
cone production (Terando et al., 2018). The conservation and
management of naturally regenerating longleaf pine stands
depends on periodic masting events for persistence. If longleaf
pine or other coastal masting species experience more frequent
high-severity winds (> 25 m s�1), then cone production may
decrease with an increased incidence of high-severity storms.
However, it is important to note that high-severity storms con-
tain only a small area of the most severe winds with a much larger
footprint of low-severity winds (Boose et al., 2001; Jagger & Els-
ner, 2006; Cannon et al., 2023). Thus, despite more severe winds
in some areas, climate change may increase the frequency of low-
intensity winds over larger areas, leading to net increases in cone
production in longleaf pine. Additional global-scale research on
TCs and the mechanisms by which they alter reproductive beha-
vior in a broad array of species can improve ecological under-
standing of masting phenomena and refine conservation efforts
in masting species like longleaf pine.
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Shiels AB, González G. 2014. Understanding the key mechanisms of tropical

forest responses to canopy loss and biomass deposition from experimental

hurricane effects. Forest Ecology and Management 332: 1–10.
Shoulders E. 1967. Fertilizer application, inherent fruitfulness, and rainfall affect

flowering of longleaf pine. Forest Science 13: 376–383.
Smith CC, Hamrick JL, Kramer CL. 1990. The advantage of mast years for wind

pollination. The American Naturalist 136: 154–166.
Sobhani VM, Barrett M, Peterson CJ. 2014. Robust prediction of treefall pit and

mound sizes from tree size across 10 forest blowdowns in eastern North

America. Ecosystems 17: 837–850.
Sork VL, Bramble J, Sexton O. 1993. Ecology of mast-fruiting in three species of

North American deciduous oaks. Ecology 74: 528–541.
Soudani K, François C, le Maire G, Le Dantec V, Dufrêne E. 2006.
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